Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Mem. Inst. Oswaldo Cruz ; 110(4): 453-460, 09/06/2015. tab
Article in English | LILACS | ID: lil-748864

ABSTRACT

Despite major improvements in its treatment and diagnosis, sepsis is still a leading cause of death and admittance to the intensive care unit (ICU). Failure to identify patients at high risk of developing septic shock contributes to an increase in the sepsis burden and rapid molecular tests are currently the most promising avenue to aid in patient risk determination and therapeutic anticipation. The primary goal of this study was to evaluate the genetic susceptibility that affects sepsis outcome in 72 sepsis patients admitted to the ICU. Seven polymorphisms were genotyped in key inflammatory response genes in sepsis, including tumour necrosis factor-α, interlelukin (IL)-1β, IL-10, IL-8, Toll-like receptor 4, CXCR1 and CXCR2. The primary finding showed that patients who were homozygous for the major A allele in IL-10 rs1800896 had almost five times higher chance to develop septic shock compared to heterozygotes. Similarly, selected clinical features and CXCR2 rs1126579 single nucleotide polymorphisms modulated septic shock susceptibility without affecting survival. These data support the hypothesis that molecular testing has clinical usefulness to improve sepsis prognostic models. Therefore, enrichment of the ICU portfolio by including these biomarkers will aid in the early identification of sepsis patients who may develop septic shock.


Subject(s)
Aged , Female , Humans , Male , Middle Aged , Genetic Predisposition to Disease , /genetics , Polymorphism, Genetic , /genetics , Shock, Septic/genetics , Genetic Markers , Genotype , Intensive Care Units , Random Allocation
2.
Mem. Inst. Oswaldo Cruz ; 100(supl.1): 223-226, Mar. 2005. graf
Article in English | LILACS | ID: lil-402204

ABSTRACT

Sepsis is a systemic inflammatory response commonly caused by bacterial infection. We demonstrated that the outcome of sepsis induced by cecal ligation and puncture (CLP) correlates with the severity of the neutrophil migration failure towards infectious focus. Failure appears to be due to a decrease in the rolling and adhesion of neutrophil to endothelium cells. It seems that neutrophil migration impairment is mediated by the circulating inflammatory cytokines, such as TNF-alpha and IL-8, which induce the nitric oxide (NO) production systemically. It is supported by the fact that intravenous administration of these cytokines reduces the neutrophil migration induced by different inflammatory stimuli, and in severe sepsis the circulating concentrations of the cytokines and chemokines are significantly increased. Moreover, the neutrophil migration failure and the reduction in the rolling/adhesion were not observed in iNOS-/- mice and, aminoguanidine prevented this event. We also demonstrated that the failure of neutrophil migration is a Toll-4 receptor (TLR4) dependent mechanism, since it was not observed in TLR4 deficient mice. Furthermore, it was also observed that circulating neutrophils obtained from septic patients present failure of neutrophil chemotaxis toward fMLP, IL-8, and LTB4 and an increased in sera concentrations of NO3 and cytokines. In conclusion, we demonstrated that, in sepsis, failure of neutrophil migration is critical for the outcome and that NO is involved in the process.


Subject(s)
Animals , Humans , Mice , Cell Movement/physiology , Cytokines/biosynthesis , Neutrophils/physiology , Nitric Oxide/biosynthesis , Systemic Inflammatory Response Syndrome/immunology , Cell Movement/immunology , Neutrophils/immunology , Severity of Illness Index , Systemic Inflammatory Response Syndrome/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL